Roots of Unity Sum
Let $ a $ and $ b $ be two 12th roots of unity, not necessarily distinct. Find the number of different possible values of $ (a + b)^{12} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We can write
\[(a + b)^{12} = b^{12} \left( 1 + \frac{a}{b} \right)^{12} = \left( 1 + \frac{a}{b} \right)^{12}.\]Note that $ \left( \frac{a}{b} \right)^{12} = \frac{a^{12}}{b^{12}} = 1, $ so $ \frac{a}{b} $ is also a 12th root of unity.
Let $ \frac{a}{b} = e^{i \theta}, $ so $ 12 \theta $ is a multiple of $ 2 \pi, $ i.e $ \theta = \frac{k \pi}{6} $ for some integer $ k $. Then
\begin{align*}
(1 + e^{i \theta})^{12} &= (e^{i \theta/2} (e^{-i \theta/2} + e^{i \theta/2}))^{12} \\
&= e^{6 i \theta} (e^{-i \theta/2} + e^{i \theta/2})^{12} \\
&= e^{6 i \theta} \left( \cos \frac{\theta}{2} - i \sin \frac{\theta}{2} + \cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)^{12} \\
&= e^{6 i \theta} 2^{12} \cos^{12} \frac{\theta}{2} \\
&= 2^{12} e^{k \pi i} \cos^{12} \frac{k \pi}{12} \\
&= 2^{12} (\cos k \pi + i \sin k \pi) \cos^{12} \frac{k \pi}{12} \\
&= 2^{12} \cos k \pi \cos^{12} \frac{k \pi}{12}.\end{align*}
We must find the number of different possible values of this expression over all integers $ k $. Note that $ \cos k \pi $ is always equal to 1 or $ -1, $ and $ \cos^{12} \frac{k \pi}{12} $ is a decreasing function for $ 0 \le k \le 6, $ giving us 7 different values. Furthermore,
\[\cos k \pi = \cos (12 - k) \pi\]and
\[\cos^{12} \frac{k \pi}{12} = \cos^{12} \frac{(12 - k) \pi}{12},\]so further values of $ k $ do not give us any new values of $ 2^{12} \cos k \pi \cos^{12} \frac{k \pi}{12} $. Hence, there are a total of $ \boxed{7} $ different possible values.