Sequence Difference Pattern

For any sequence of real numbers $ A=(a_1,a_2,a_3,\ldots) $, define $ \Delta A $ to be the sequence $ (a_2-a_1,a_3-a_2,a_4-a_3,\ldots) $, whose $ n^{\text{th}} $ term is $ a_{n+1}-a_n $. Suppose that all of the terms of the sequence $ \Delta(\Delta A) $ are $ 1 $, and that $ a_{19}=a_{92}=0 $. Find $ a_1 $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$