Sequence Difference Pattern
For any sequence of real numbers $ A=(a_1,a_2,a_3,\ldots) $, define $ \Delta A $ to be the sequence $ (a_2-a_1,a_3-a_2,a_4-a_3,\ldots) $, whose $ n^{\text{th}} $ term is $ a_{n+1}-a_n $. Suppose that all of the terms of the sequence $ \Delta(\Delta A) $ are $ 1 $, and that $ a_{19}=a_{92}=0 $. Find $ a_1 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$