Sequence Limit Determination
Let $ a_1, $ $ a_2, $ $ \dots $ be a sequence of real numbers such that for all positive integers $ n, $ \[\sum_{k = 1}^n a_k \left( \frac{k}{n} \right)^2 = 1.\]Find the smallest $ n $ such that $ a_n < \frac{1}{2018} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$