Sequence Minimum Sum
Given that a sequence satisfies $ x_0=0 $ and $ |x_k|=|x_{k-1}+3| $ for all integers $ k\ge1 $, find the minimum possible value of $ |x_1+x_2+\cdots+x_{2006}| $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
The condition $ |x_k|=|x_{k-1}+3| $ is equivalent to $ x_k^2=(x_{k-1}+3)^2 $. Thus $$\begin{aligned}\sum_{k=1}^{n+1}x_k^2&=\sum_{k=1}^{n+1}(x_{k-1}+3)^2
=\sum_{k=0}^{n}(x_{k}+3)^2 =\left(\sum_{k=0}^{n}x_k^2\right)
+\left(6\sum_{k=0}^{n}x_k\right)+9(n+1),\quad{\rm so}\cr
x_{n+1}^2&=\sum_{k=1}^{n+1}x_k^2 -\sum_{k=0}^{n}x_k^2
=\left(6\sum_{k=0}^{n}x_k\right)+9(n+1),\quad{\rm and}\cr
\sum_{k=0}^{n}x_k&= {1\over6}\left[x_{n+1}^2-9(n+1)\right].\end{aligned}$$Therefore,
\[\displaystyle \left|\sum_{k=1}^{2006}x_k\right| ={1\over6}\left|x_{2007}^2-18063\right|.\]Notice that $ x_k $ is a multiple of 3 for all $ k $, and that $ x_k $ and $ k $ have the same parity. The requested sum will be a minimum when $ |x_{2007}^2-18063| $ is a minimum, that is, when $ x_{2007} $ is the multiple of 3 whose square is as close as possible to 18063. Check odd multiples of 3, and find that $ 129^2<16900 $, $ 141^2>19600 $, and $ 135^2=18225 $. The requested minimum is therefore $ {1\over6}|135^2-18063|=\boxed{27} $, provided there exists a sequence that satisfies the given conditions and for which $ x_{2007}=135 $.
An example of such a sequence is
\[x_k= \left\{ \begin{array}{cl}
{3k}& \text{for $ k\le45 $,}\\
{-138}& \text{for $ k>45 $ and $ k $ even,}\\
{135}& \text{for $ k>45 $ and $ k $ odd}
\end{array}
\right.\]