Sequences Addition Problem
Let $ a_1, $ $ a_2, $ $ a_3, $ $ \dots $ be an arithmetic sequence, and let $ b_1, $ $ b_2, $ $ b_3, $ $ \dots $ be a geometric sequence. The sequence $ c_1, $ $ c_2, $ $ c_3, $ $ \dots $ has $ c_n = a_n + b_n $ for each positive integer $ n $. If $ c_1 = 1, $ $ c_2 = 4, $ $ c_3 = 15, $ and $ c_4 = 2, $ compute $ c_5 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$