Solving Injective Function
The injective function $ f(x) $ satisfies \[f(x) f(x + y) = f(2x + y) - xf(x + y) + x\]for all real numbers $ x $ and $ y $. Find $ f(x) $. Note: A function $ f $ is injective if $ f(a) = f(b) $ implies $ a = b $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$