Spinner Number Comparison
Max has a spinner that lands on 1 with a probability of $ \frac{1}{2} $, lands on 2 with a probability of $ \frac{1}{4} $, lands on 3 with a probability of $ \frac{1}{6} $, and lands on 4 with a probability of $ \frac{1}{12} $. If Max spins the spinner, and then Zack spins the spinner, then what is the probability that Max gets a larger number than Zack does?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$