Sum of Imaginary Parts
Let $$P(x)=24x^{24}+\sum_{j=1}^{23}(24-j)\left(x^{24-j}+x^{24+j}\right).$$Let $ z_1, z_2, \ldots, z_r $ be the distinct zeros of $ P(x) $, and let $ z_k^2=a_k+b_{k}i $ for $ k=1, 2, \ldots, r $, where $ i=\sqrt{-1} $, and $ a_k $ and $ b_k $ are real numbers. Find \[\sum_{k=1}^{r}|b_k|.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$