Sum Product Property

Two positive numbers $ p $ and $ q $ have the property that their sum is equal to their product. If their difference is $ 7 $, what is $ \frac{1}{\frac{1}{p^2}+\frac{1}{q^2}} $? Your answer will be of the form $ \frac{a+b\sqrt{c}}{d} $, where $ a $ and $ b $ don't both share the same common factor with $ d $ and $ c $ has no square as a factor. Find $ a+b+c+d $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$