Tetrahedron Volume Calculation
Find the volume of the tetrahedron whose vertices are $ A = (0,1,2), $ $ B = (3,0,1), $ $ C = (4,3,6), $ and $ D = (2,3,2) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ \mathbf{a} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, $ $ \mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, $ $ \mathbf{c} = \begin{pmatrix} 4 \\ 3 \\ 6 \end{pmatrix}, $ and $ \mathbf{d} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} $. First, we find the plane containing $ B, $ $ C, $ and $ D $.
The normal vector to this plane is
\[(\mathbf{c} - \mathbf{b}) \times (\mathbf{d} - \mathbf{b}) = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \times \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -12 \\ -6 \\ 6 \end{pmatrix}.\]Scaling, we can take $ \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} $ as the normal vector. Then the equation of the plane is of the form
\[2x + y - z + k = 0.\]Substituting any of the coordinates of $ B, $ $ C, $ or $ D, $ we get that the equation of the plane is
\[2x + y - z - 5 = 0.\]Then the distance from $ A $ to plane $ BCD $ (acting as the height of the tetrahedron) is
\[\frac{|(2)(0) + (1)(1) - (1)(2) - 5|}{\sqrt{2^2 + 1^2 + (-1)^2}} = \frac{6}{\sqrt{6}} = \sqrt{6}.\]The area of triangle $ BCD $ (acting as the base of the tetrahedron) is given by
\[\frac{1}{2} \| (\mathbf{c} - \mathbf{b}) \times (\mathbf{d} - \mathbf{b}) \| = \frac{1}{2} \left\| \begin{pmatrix} -12 \\ -6 \\ 6 \end{pmatrix} \right\| = 3 \sqrt{6}.\]Therefore, the volume of tetrahedron $ ABCD $ is
\[\frac{1}{3} \cdot 3 \sqrt{6} \cdot \sqrt{6} = \boxed{6}.\]