Triangle Probability Calculation

An angle $ x $ is chosen at random from the interval $ 0^{\circ} < x < 90^{\circ} $. Let $ p $ be the probability that the numbers $ \sin^2 x $, $ \cos^2 x $, and $ \sin x \cos x $ are not the lengths of the sides of a triangle. Given that $ p=d/n $, where $ d $ is the number of degrees in $ \arctan m $ and $ m $ and $ n $ are positive integers with $ m+n<1000 $, find $ m+n $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$