Triangle Probability Calculation
An angle $ x $ is chosen at random from the interval $ 0^{\circ} < x < 90^{\circ} $. Let $ p $ be the probability that the numbers $ \sin^2 x $, $ \cos^2 x $, and $ \sin x \cos x $ are not the lengths of the sides of a triangle. Given that $ p=d/n $, where $ d $ is the number of degrees in $ \arctan m $ and $ m $ and $ n $ are positive integers with $ m+n<1000 $, find $ m+n $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$