Triangle Side Summation
Let $ T $ be the set of all triples $ (a,b,c) $ of positive integers for which there exist triangles with side lengths $ a, $ $ b, $ $ c $. Compute
\[\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
For a triangle with side lengths $ a, $ $ b, $ $ c, $ let $ s = \frac{a + b + c}{2}, $ and let
\begin{align*}
x &= s - a = \frac{-a + b + c}{2}, \\
y &= s - b = \frac{a - b + c}{2}, \\
z &= s - c = \frac{a + b - c}{2}.\end{align*}By the Triangle Inequality, $ x, $ $ y, $ and $ z $ are all positive. (This technique is often referred to as the Ravi Substitution.) Note that
\begin{align*}
a &= y + z, \\
b &= x + z, \\
c &= x + y.\end{align*}If $ s $ is even, then $ x, $ $ y, $ and $ z $ are all positive integers. So, we can set $ x = i, $ $ y = j, $ and $ z = k, $ which gives us the parameterization $ (a,b,c) = (j + k, i + k, i + j) $.
If $ s $ is odd, then $ x, $ $ y, $ and $ z $ are all of the form $ n - \frac{1}{2}, $ where $ n $ is a positive integer. So, we can set $ x = i - \frac{1}{2}, $ $ y = j - \frac{1}{2}, $ and $ z = k - \frac{1}{2} $. This gives us the parameterization $ (a,b,c) = (j + k - 1, i + k - 1, i + j - 1) $.
Thus, our sum is
\begin{align*}
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c} &= \sum_{i = 1}^\infty \sum_{j = 1}^\infty \sum_{k = 1}^\infty \left( \frac{2^{j + k}}{3^{i + k} 5^{i + j}} + \frac{2^{j + k - 1}}{3^{i + k - 1} 5^{i + j - 1}} \right) \\
&= \sum_{i = 1}^\infty \sum_{j = 1}^\infty \sum_{k = 1}^\infty \left( \frac{2^{j + k}}{3^{i + k} 5^{i + j}} + \frac{15}{2} \cdot \frac{2^{j + k}}{3^{i + k} 5^{i + j}} \right) \\
&= \frac{17}{2} \sum_{i = 1}^\infty \sum_{j = 1}^\infty \sum_{k = 1}^\infty \frac{2^{j + k}}{3^{i + k} 5^{i + j}} \\
&= \frac{17}{2} \sum_{i = 1}^\infty \frac{1}{15^i} \sum_{j = 1}^\infty \left( \frac{2}{5} \right)^j \sum_{k = 1}^\infty \left( \frac{2}{3} \right)^k \\
&= \frac{17}{2} \cdot \frac{1/15}{1 - 1/15} \cdot \frac{2/5}{1 - 2/5} \cdot \frac{2/3}{1 - 2/3} \\
&= \boxed{\frac{17}{21}}.\end{align*}