Triangular Number Puzzle
For a positive integer $ n $, the $ n^{th} $ triangular number is $ T(n)=\dfrac{n(n+1)}{2} $. For example, $ T(3) = \frac{3(3+1)}{2}= \frac{3(4)}{2}=6 $, so the third triangular number is 6. Determine the smallest integer $ b>2011 $ such that $ T(b+1)-T(b)=T(x) $ for some positive integer $ x $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$