Trigonometric Equality Solutions 2
If $ \sin (\pi \cos x) = \cos (\pi \sin x), $ enter all possible values of $ \sin 2x, $ separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
From the given equation,
\[\cos (\pi \sin x) = \sin (\pi \cos x) = \cos \left( \frac{\pi}{2} - \pi \cos x \right).\]This means $ \pi \sin x $ and $ \frac{\pi}{2} - \pi \cos x $ either add up to a multiple of $ 2 \pi, $ or differ by a multiple of $ 2 \pi $.
In the first case,
\[\pi \sin x + \frac{\pi}{2} - \pi \cos x = 2 \pi n\]for some integer $ n $. Then
\[\sin x - \cos x = 2n - \frac{1}{2}.\]Since
\[(\sin x - \cos x)^2 = \sin^2 x - 2 \sin x \cos x + \cos^2 x = 1 - \sin 2x \le 2,\]it follows that $ |\sin x - \cos x| \le \sqrt{2} $. Thus, the only possible value of $ n $ is 0, in which case
\[\sin x - \cos x = -\frac{1}{2}.\]Squaring, we get
\[\sin^2 x - 2 \sin x \cos x + \cos^2 x = \frac{1}{4}.\]Then $ 1 - \sin 2x = \frac{1}{4}, $ so $ \sin 2x = \frac{3}{4} $.
In the second case,
\[\pi \sin x + \pi \cos x - \frac{\pi}{2} = 2 \pi n\]for some integer $ n $. Then
\[\sin x + \cos x = 2n + \frac{1}{2}.\]By the same reasoning as above, the only possible value of $ n $ is 0, in which case
\[\sin x + \cos x = \frac{1}{2}.\]Squaring, we get
\[\sin^2 x + 2 \sin x \cos x + \cos^2 x = \frac{1}{4}.\]Then $ 1 + \sin 2x = \frac{1}{4}, $ so $ \sin 2x = -\frac{3}{4} $.
Thus, the possible values of $ \sin 2x $ are $ \boxed{\frac{3}{4}, -\frac{3}{4}} $.