Trigonometric Function Transformation
The expression
\[2 \sqrt[3]{3 \sec^2 20^\circ \sin^2 10^\circ}\]can be expressed in the form $ a + b \sec 20^\circ, $ where $ a $ and $ b $ are integers. Find the ordered pair $ (a,b) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We want integers $ a $ and $ b $ so that
\[a + b \sec 20^\circ = 2 \sqrt[3]{3 \sec^2 20^\circ \sin^2 10^\circ}.\]Cubing both sides, we get
\[a^3 + 3a^2 b \sec 20^\circ + 3ab^2 \sec^2 20^\circ + b^3 \sec^3 20^\circ = 24 \sec^2 20^\circ \sin^2 10^\circ.\]From the half-angle formula, $ \sin^2 10^\circ = \frac{1 - \cos 20^\circ}{2}, $ so
\begin{align*}
24 \sec^2 20^\circ \sin^2 10^\circ &= 24 \sec^2 20^\circ \cdot \frac{1 - \cos 20^\circ}{2} \\
&= 12 \sec^2 20^\circ - 12 \sec 20^\circ.\end{align*}To deal with the $ \sec^3 20^\circ $ term, we apply the triple angle formula $ \cos 3x = 4 \cos^3 x - 3 \cos x $. Setting $ x = 20^\circ, $ we get
\[\frac{1}{2} = \cos 60^\circ = 4 \cos^3 20^\circ - 3 \cos 20^\circ.\]Dividing both sides by $ \cos^3 20^\circ, $ we get $ \frac{1}{2} \sec^3 20^\circ = 4 - 3 \sec^2 20^\circ, $ so
\[\sec^3 20^\circ = 8 - 6 \sec^2 20^\circ.\]Thus,
\begin{align*}
&a^3 + 3a^2 b \sec 20^\circ + 3ab^2 \sec^2 20^\circ + b^3 \sec^3 20^\circ \\
&= a^3 + 3a^2 b \sec 20^\circ + 3ab^2 \sec^2 20^\circ + b^3 (8 - 6 \sec^2 20^\circ) \\
&= a^3 + 8b^3 + 3a^2 b \sec 20^\circ + (3ab^2 - 6b^3) \sec^2 20^\circ.\end{align*}We want this to equal $ 12 \sec^2 20^\circ - 12 \sec 20^\circ, $ so we can try to find integers $ a $ and $ b $ so that
\begin{align*}
a^3 + 8b^3 &= 0, \\
3a^2 b &= -12, \\
3ab^2 - 6b^3 &= 12.\end{align*}From the first equation, $ a^3 = -8b^3, $ so $ a = -2b $. Substituting into the second equation, we get $ 12b^3 = -12, $ so $ b^3 = -1, $ and $ b = -1 $. Then $ a = -2 $. These values satisfy the third equation, so $ (a,b) = \boxed{(2,-1)} $.