Trigonometric Polynomial Sum

If $ \arccos x + \arccos 2x + \arccos 3x = \pi, $ then $ x $ satisfies a cubic polynomial of the form \[ax^3 + bx^2 + cx + d = 0,\]where $ a, $ $ b, $ $ c, $ and $ d $ are integers, and $ a \neq 0 $. Find the smallest possible value of $ |a| + |b| + |c| + |d| $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$