Upc Code Digit Calculation

The UPC code, made up of numbers and dashes, on a video tape is 9-78094-11006-$ x $. The digit $ x $ is in the $ 12^{\mathrm{th}} $ position. Let $ n $ be the value obtained by adding the digits in the odd positions, tripling that sum, and then adding the digits in the even positions. A valid UPC code is such that $ n $ is divisible by 10. For what value of $ x $ will this UPC code be valid?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$