Vector Rotation and Reflection
Let $ \mathbf{v}_0 $ be a vector. The vector $ \mathbf{v}_0 $ is rotated about the origin by an angle of $ 42^\circ $ counter-clockwise, taking it to vector $ \mathbf{v}_1 $. The vector $ \mathbf{v}_1 $ is then reflected over the line with direction vector $ \begin{pmatrix} \cos 108^\circ \\ \sin 108^\circ \end{pmatrix}, $ taking it to vector $ \mathbf{v}_2 $. The vector $ \mathbf{v}_2 $ can also be produced by reflecting the vector $ \mathbf{v}_0 $ over the line with direction vector $ \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, $ where $ \theta $ is an acute angle. Find $ \theta $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$