Vector Rotation and Reflection

Let $ \mathbf{v}_0 $ be a vector. The vector $ \mathbf{v}_0 $ is rotated about the origin by an angle of $ 42^\circ $ counter-clockwise, taking it to vector $ \mathbf{v}_1 $. The vector $ \mathbf{v}_1 $ is then reflected over the line with direction vector $ \begin{pmatrix} \cos 108^\circ \\ \sin 108^\circ \end{pmatrix}, $ taking it to vector $ \mathbf{v}_2 $. The vector $ \mathbf{v}_2 $ can also be produced by reflecting the vector $ \mathbf{v}_0 $ over the line with direction vector $ \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, $ where $ \theta $ is an acute angle. Find $ \theta $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$