Vectors Angle Cosine 1
Let $ \mathbf{u} $ and $ \mathbf{v} $ be vectors such that $ \|\mathbf{u}\| = \|\mathbf{v}\| = 2 $ and $ \mathbf{u} \cdot \mathbf{v} = -1 $. If $ \theta $ is the angle between the vectors $ \mathbf{u} + \mathbf{v} $ and $ 2 \mathbf{u} - \mathbf{v}, $ then find $ \cos \theta $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$