Vectors Smallest Angle
Let $ \mathbf{a}, $ $ \mathbf{b}, $ and $ \mathbf{c} $ be vectors such that $ \|\mathbf{a}\| = \|\mathbf{b}\| = 1, $ $ \|\mathbf{c}\| = \frac{2}{\sqrt{7}}, $ and
\[\mathbf{c} + \mathbf{c} \times \mathbf{a} = \mathbf{b}.\]Find the smallest possible angle between $ \mathbf{a} $ and $ \mathbf{c}, $ in degrees.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Since $ \mathbf{c} + \mathbf{c} \times \mathbf{a} = \mathbf{b}, $
\[(\mathbf{c} + \mathbf{c} \times \mathbf{a}) \cdot (\mathbf{c} + \mathbf{c} \times \mathbf{a}) = \mathbf{b} \cdot \mathbf{b}.\]This expands as
\[\mathbf{c} \cdot \mathbf{c} + 2 \mathbf{c} \cdot (\mathbf{c} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{a}) \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{b} \cdot \mathbf{b}.\]We know $ \mathbf{b} \cdot \mathbf{b} = \|\mathbf{b}\|^2 = 1 $ and $ \mathbf{c} \cdot \mathbf{c} = \|\mathbf{c}\|^2 = \frac{4}{7} $.
Since $ \mathbf{c} \times \mathbf{a} $ is orthogonal to $ \mathbf{c}, $
\[\mathbf{c} \cdot (\mathbf{c} \times \mathbf{a}) = 0.\]Finally, $ (\mathbf{c} \times \mathbf{a}) \cdot (\mathbf{c} \times \mathbf{a}) = \|\mathbf{c} \times \mathbf{a}\|^2 $. Let $ \theta $ be the angle between $ \mathbf{a} $ and $ \mathbf{c} $. Then
\[\|\mathbf{c} \times \mathbf{a}\| = \|\mathbf{a}\| \|\mathbf{c}\| \sin \theta = \frac{2}{\sqrt{7}} \sin \theta,\]so $ \|\mathbf{c} \times \mathbf{a}\|^2 = \frac{4}{7} \sin^2 \theta $. Hence,
\[\frac{4}{7} + \frac{4}{7} \sin^2 \theta = 1.\]This leads to
\[\sin^2 \theta = \frac{3}{4}.\]so
\[\sin \theta = \pm \frac{\sqrt{3}}{2}.\]The smallest possible angle $ \theta $ is then $ \boxed{60^\circ} $.
The vectors $ \mathbf{a} = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \\ 0 \end{pmatrix}, $ $ \mathbf{b} = \begin{pmatrix} 2/\sqrt{7} \\ 0 \\ \sqrt{3/7} \end{pmatrix}, $ and $ \mathbf{c} = \begin{pmatrix} 2/\sqrt{7} \\ 0 \\ 0 \end{pmatrix} $ show that an angle of $ 60^\circ $ is achievable.