Volume of Point Set Region
For a point $ P, $ let $ d_1, $ $ d_2 $ and $ d_3 $ represents the distances from $ P $ to the planes $ x - z = 0, $ $ x - 2y + z = 0, $ and $ x + y + z = 0 $. Let $ S $ be the set of points $ P $ such that \[d_1^2 + d_2^2 + d_3^2 = 36.\]Find the region of the volume enclosed by $ S $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$