Alternating Sequence Term
The sequence 1, 2, 4, 5, 10, 11, 22, 23, 46, 47, $ \dots $ is formed as follows: $ \bullet $ Start with the number 1. $ \bullet $ Add one to get 2. $ \bullet $ Double that to get 4. $ \bullet $ Add one to get 5. $ \bullet $ Double that to get 10, and so on. We repeat the steps of "add one" and "double that", alternating between them. The 100th term will be of the form $ 3 \cdot 2^k - 1 $. Compute $ k $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$