Alternating Sequence Term

The sequence 1, 2, 4, 5, 10, 11, 22, 23, 46, 47, $ \dots $ is formed as follows: $ \bullet $ Start with the number 1. $ \bullet $ Add one to get 2. $ \bullet $ Double that to get 4. $ \bullet $ Add one to get 5. $ \bullet $ Double that to get 10, and so on. We repeat the steps of "add one" and "double that", alternating between them. The 100th term will be of the form $ 3 \cdot 2^k - 1 $. Compute $ k $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$