Recursive Sequence Value 3
The sequence $ a_0 $, $ a_1 $, $ a_2 $, $ \ldots\, $ satisfies the recurrence equation \[ a_n = 2 a_{n-1} - 2 a_{n - 2} + a_{n - 3} \]for every integer $ n \ge 3 $. If $ a_{20} = 1 $, $ a_{25} = 10 $, and $ a_{30} = 100 $, what is the value of $ a_{1331} $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$