Arithmetic Geometric Sequence

Three distinct integers $ a, $ $ b, $ and $ c $ have the following properties: $ \bullet $ $ abc = 17955 $ $ \bullet $ $ a, $ $ b, $ $ c $ are three consecutive terms of an arithmetic sequence, in that order $ \bullet $ $ 3a + b, $ $ 3b + c, $ $ 3c + a $ are three consecutive terms of a geometric sequence, in that order Find $ a + b + c $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$