Mean Line Slope

Let $ w_1, w_2, \dots, w_n $ be complex numbers. A line $ L $ in the complex plane is called a mean line for the points $ w_1, w_2, \dots, w_n $ if $ L $ contains points (complex numbers) $ z_1, z_2, \dots, z_n $ such that \[\sum_{k = 1}^n (z_k - w_k) = 0.\]For the numbers $ w_1 = 32 + 170i $, $ w_2 = -7 + 64i $, $ w_3 = -9 +200i $, $ w_4 = 1 + 27i $, and $ w_5 = -14 + 43i $, there is a unique mean line with $ y $-intercept $ 3 $. Find the slope of this mean line.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$