Cubic Equation Root Sum
Let $ r, $ $ s, $ and $ t $ be the roots of the equation $ 4x^3 - 59x^2 + 32x - 32 = 0 $. Find the value of $ f(r) + f(s) + f(t) $, where $ f(x) = 4x^3 - 59x^2 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$