Nested Function Inversion
If \[f(n + 1) = (-1)^{n + 1} n - 2f(n)\]for $ n \ge 1, $ and $ f(1) = f(1986), $ compute \[f(1) + f(2) + f(3) + \dots + f(1985).\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$