Function Range Determination 3
What is the range of the function $ g(x) = \frac{3x+1}{x+8} $ ?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Solution #1
To determine the range, we suppose $ y=\frac{3x+1}{x+8} $ (where $ x\ne -8 $) and see if we can solve for $ x $:
$$\begin{array}{r r@{~=~}l}
& y & (3x+1)/(x+8) \\
\Leftrightarrow & y(x + 8) & 3x + 1 \\
\Leftrightarrow & yx + 8y & 3x + 1 \\
\Leftrightarrow & x(y - 3) & 1 - 8y.\end{array}$$This last equation gives a contradiction if $ y=3 $, since in this case it says that $ 0=-23 $. Therefore, it is impossible for $ g(x) $ to equal $ 3 $ for any value of $ x $. But for any value of $ y $ other than $ 3 $, the last equation can be solved to yield $ x = \frac{1-8y}{y-3} $, or, in other words, $ g\left(\frac{1-8y}{y-3}\right)=y $.
Therefore, the range of $ g(x) $ is $ \mathbb{R}\setminus\{3\} = \boxed{(-\infty,3)\cup(3,\infty)} $.
Solution #2
We can rewrite $ g(x) $ as follows:
$$g(x) = \frac{3x+1}{x+8} = \frac{3x+24}{x+8}-\frac{23}{x+8} = 3 - \frac{23}{x+8}.$$Then we note that $ x+8 $ takes on all real values, so $ \frac{1}{x+8} $ takes on every value which is the reciprocal of some nonzero real number, i.e., $ \frac{1}{x+8} $ takes on all nonzero values. Accordingly, $ 3-\frac{23}{x+8} $ takes on all values not equal to $ 3 $.
Therefore, the range of $ g(x) $ is $ \mathbb{R}\setminus\{3\} = \boxed{(-\infty,3)\cup(3,\infty)} $.