Polynomial Roots Transformation
The polynomial $ f(x)=x^3-3x^2-4x+4 $ has three real roots $ r_1 $, $ r_2 $, and $ r_3 $. Let $ g(x)=x^3+ax^2+bx+c $ be the polynomial which has roots $ s_1 $, $ s_2 $, and $ s_3 $, where \begin{align*} s_1 &= r_1+r_2z+r_3z^2, \\ s_2 &= r_1z+r_2z^2+r_3, \\ s_3 &= r_1z^2+r_2+r_3z, \end{align*}and $ z=\frac{-1+i\sqrt3}2 $. Find the real part of the sum of the coefficients of $ g(x) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$