Integer Floor Function 1
Given a real number $ x $, let $ \lfloor x\rfloor $ denote the greatest integer less than or equal to $ x $. For a certain integer $ k $, there are exactly 70 positive integers $ n_1 $, $ n_2, \ldots, $ $ n_{70} $ such that \[k = \lfloor \sqrt[3]{n_1} \rfloor = \lfloor \sqrt[3]{n_2} \rfloor =\cdots= \lfloor \sqrt[3]{n_{70}} \rfloor\]and $ k $ divides $ n_i $ for all $ i $ such that $ 1 \leq i \leq 70 $. Find the maximum value of $ \displaystyle\frac{n_i}{k} $ for $ 1 \leq i \leq 70 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$