Integer Floor Function 1

Given a real number $ x $, let $ \lfloor x\rfloor $ denote the greatest integer less than or equal to $ x $. For a certain integer $ k $, there are exactly 70 positive integers $ n_1 $, $ n_2, \ldots, $ $ n_{70} $ such that \[k = \lfloor \sqrt[3]{n_1} \rfloor = \lfloor \sqrt[3]{n_2} \rfloor =\cdots= \lfloor \sqrt[3]{n_{70}} \rfloor\]and $ k $ divides $ n_i $ for all $ i $ such that $ 1 \leq i \leq 70 $. Find the maximum value of $ \displaystyle\frac{n_i}{k} $ for $ 1 \leq i \leq 70 $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$