Pure Imaginary Ratio
Let $ z_1 $ and $ z_2 $ be complex numbers such that $ \frac{z_2}{z_1} $ is pure imaginary and $ 2z_1 \neq 7z_2 $. Compute \[\left| \frac{2z_1 + 7z_2}{2z_1 - 7z_2} \right|.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$