Polynomial Roots Sum 5

Steve says to Jon, "I am thinking of a polynomial whose roots are all positive integers. The polynomial has the form $ P(x) = 2x^3-2ax^2+(a^2-81)x-c $ for some positive integers $ a $ and $ c $. Can you tell me the values of $ a $ and $ c $?" After some calculations, Jon says, "There is more than one such polynomial." Steve says, "You're right. Here is the value of $ a $." He writes down a positive integer and asks, "Can you tell me the value of $ c $?" Jon says, "There are still two possible values of $ c $." Find the sum of the two possible values of $ c $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$