Recurrence Sequence Sum
An infinite sequence of real numbers $ a_1, a_2, \dots $ satisfies the recurrence \[ a_{n+3} = a_{n+2} - 2a_{n+1} + a_n \]for every positive integer $ n $. Given that $ a_1 = a_3 = 1 $ and $ a_{98} = a_{99} $, compute $ a_1 + a_2 + \dots + a_{100} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$