Recurrence Sequence Sum

An infinite sequence of real numbers $ a_1, a_2, \dots $ satisfies the recurrence \[ a_{n+3} = a_{n+2} - 2a_{n+1} + a_n \]for every positive integer $ n $. Given that $ a_1 = a_3 = 1 $ and $ a_{98} = a_{99} $, compute $ a_1 + a_2 + \dots + a_{100} $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$