Sequence Property Analysis

A sequence of positive integers with $ a_1 = 1 $ and $ a_9+a_{10}=646 $ is formed so that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic progression, and, in general, for all $ n\ge1 $, the terms $ a_{2n-1} $, $ a_{2n} $, and $ a_{2n+1} $ are in geometric progression, and the terms $ a_{2n} $, $ a_{2n+1} $, and $ a_{2n+2} $ are in arithmetic progression. Let $ a_n $ be the greatest term in this sequence that is less than 1000. Find $ n+a_n $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$